209. 长度最小的子数组
难度中等1393收藏分享切换为英文接收动态反馈
给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其和 ≥ target
的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度。如果不存在符合条件的子数组,返回 0
。
示例 1:
1 | 输入:target = 7, nums = [2,3,1,2,4,3] |
示例 2:
1 | 输入:target = 4, nums = [1,4,4] |
示例 3:
1 | 输入:target = 11, nums = [1,1,1,1,1,1,1,1] |
提示:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
进阶:
- 如果你已经实现
O(n)
时间复杂度的解法, 请尝试设计一个O(n log(n))
时间复杂度的解法。
解法1:暴力解法,两个循环遍历时间复杂度O(n^2)
1 | class Solution: |
解法2: 滑动窗口参见Carl
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。首先要思考 如果用一个for循环,那么应该表示 滑动窗口的起始位置,还是终止位置。
如果只用一个for循环来表示 滑动窗口的起始位置,那么如何遍历剩下的终止位置?此时难免再次陷入 暴力解法的怪圈。
所以 只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置。那么问题来了, 滑动窗口的起始位置如何移动呢?这里还是以题目中的示例来举例,s=7, 数组是 2,3,1,2,4,3,来看一下查找的过程:
最后找到 4,3 是最短距离。
其实从动画中可以发现滑动窗口也可以理解为双指针法的一种!只不过这种解法更像是一个窗口的移动,所以叫做滑动窗口更适合一些。
在本题中实现滑动窗口,主要确定如下三点:
- 窗口内是什么?
- 如何移动窗口的起始位置?
- 如何移动窗口的结束位置?
窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。解题的关键在于 窗口的起始位置如何移动,如图所示:
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)。
1 | #滑动窗口 |
904. 水果成篮
难度中等277收藏分享切换为英文接收动态反馈
你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits
表示,其中 fruits[i]
是第 i
棵树上的水果 种类 。
你想要尽可能多地收集水果。然而,农场的主人设定了一些严格的规矩,你必须按照要求采摘水果:
- 你只有 两个 篮子,并且每个篮子只能装 单一类型 的水果。每个篮子能够装的水果总量没有限制。
- 你可以选择任意一棵树开始采摘,你必须从 每棵 树(包括开始采摘的树)上 恰好摘一个水果 。采摘的水果应当符合篮子中的水果类型。每采摘一次,你将会向右移动到下一棵树,并继续采摘。
- 一旦你走到某棵树前,但水果不符合篮子的水果类型,那么就必须停止采摘。
给你一个整数数组 fruits
,返回你可以收集的水果的 最大 数目。
示例 1:
1 | 输入:fruits = [1,2,1] |
示例 2:
1 | 输入:fruits = [0,1,2,2] |
示例 3:
1 | 输入:fruits = [1,2,3,2,2] |
示例 4:
1 | 输入:fruits = [3,3,3,1,2,1,1,2,3,3,4] |
提示:
1 <= fruits.length <= 105
0 <= fruits[i] < fruits.length
76. 最小覆盖子串
难度困难2175收藏分享切换为英文接收动态反馈
给你一个字符串 s
、一个字符串 t
。返回 s
中涵盖 t
所有字符的最小子串。如果 s
中不存在涵盖 t
所有字符的子串,则返回空字符串 ""
。
注意:
- 对于
t
中重复字符,我们寻找的子字符串中该字符数量必须不少于t
中该字符数量。 - 如果
s
中存在这样的子串,我们保证它是唯一的答案。
示例 1:
1 | 输入:s = "ADOBECODEBANC", t = "ABC" |
示例 2:
1 | 输入:s = "a", t = "a" |
示例 3:
1 | 输入: s = "a", t = "aa" |
提示:
1 <= s.length, t.length <= 105
s
和t
由英文字母组成
进阶:你能设计一个在 o(n)
时间内解决此问题的算法吗?